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Influence of Dipole Fields between Solute Molecules. III. Thermodynamic Proper­
ties of Non-Electrolytes 

By RAYMOND M. FUOSS 

It is well known that the freezing point depres­
sion of practically all real solutions is never 
equal to that corresponding to an ideal solution 
of the same concentration. Leaving strong elec­
trolytes out of consideration, the deviation be­
tween actual and ideal depressions is usually pro­
portional to concentration, at least in the limit of 
low concentrations. One of the following two 
explanations is possible: either the solute is asso­
ciated to form clusters containing at least two 
molecules, or else the effect is simply due to inter-
molecular forces, which, while they furnish a con­
tribution to free energy and hence appear in the 
thermodynamic properties, do not actually cause 
the formation of stable configurations containing 
several molecules. Very similar possibilities are 
found in the case of electrolytes, of course; in 
solvents of low dielectric constant, the Coulomb 
potential is high enough to render ion clusters 
stable to thermal impact, while in solvents of high 
dielectric constant, only the long range effects of 
the Coulomb forces appear. Every real molecule 
has a certain polarizability, and most molecules 
have permanent quadruple or dipole moments, 
so that one always has to reckon with intermolecu-
lar forces, even in the case of non-electrolytes, and 
forces between particles obviously mean non-ideal 
solutions. Because dipole molecules include so 
large a fraction of the known chemical compounds, 
and because a dipole is the next highest electrical 
singularity after a point charge, it seems worth 
while to consider the properties of such solutions. 

In a previous paper1 the osmotic properties of 
solutions of molecules which contain large dipole 
moments were calculated in terms of a parameter 

x = f/a'DkT (1) 
When x » 1, the main contribution to the free 
energy arises from configurations where the 
molecules are in actual contact, and here it seems 
proper to speak of association. But when x is of 
the order of unity, appreciable contributions are 
given by molecule-pairs which have not yet ap­
proached to contact, so that we have here the 
simple case when intermolecular forces produce 
deviations from ideal behavior, without their 

(1) Fuoss, THIS JOURNAL, «6, 1027 (1934). 

being strong enough to cause association, if the 
latter is defined to mean pairwise grouping of 
individual molecules whose mutual energy is large 
compared to kT. 

When x = 0(1), the previous asymptotic ex­
pansion cannot be used, of course. It is the pur­
pose of the present paper to derive the thermody­
namic properties of solutes whose molecules may 
be represented as spheres containing point di-
poles at the center.8 

In the limit of low concentrations,3 we have 
(Pi -P)IPi = NI/2V (2) 

where 

I = ) {e-«*T'- l)d7 (3) 

Here u is the potential energy of two dipole mole­
cules as a function of their relative coordinates; the 
other symbols have the meaning given in the first 
reference and will not be redefined here. In terms 
of the Lewis and Randall j-function, we then have 

(dj/dm)m-„ = NdI/2000 (4) 
as the limiting slope on aj-tn plot. For the spheri­
cal model, we shall show that 

/ = W/DkTyze^x) 
where 6{x) is the function of the parameter x de­
fined by (13) and for which Table II gives numeri­
cal values. Then 

\dm)o 1000 DkT"W (5) 

If benzene is used as the solvent for the freezing 
point determinations, (5) and (1) become 

(dj/dm), - 6.25 X 10-Wd(x) (6) 
(2) This is the case treated by Debye, "Handbuch der Radiologic 

(Marx)," Leipzig, 1925, p. 636 ff. The present result differs from 
Debye's by a factor of 5/4 in the leading term. As will be shown 
later, Debye's earlier result appears to be incorrectly computed. 
The writer takes this opportunity to thank Professor Debye for look­
ing over the present calculation. 

Also, in accordance with the request of one of the referees for this 
paper, another reference to earlier work seems proper. Keesom 
[Physik. Z., 22, 129, 643 (1921)) treated the problem of the equation 
of state of dipole gases, as was mentioned in footnote 7 of the first 
paper of this series. Kirkwood [J. Chem. Phys., 2, 351 (1934)) 
suggested that Keesom's method could be applied to the case of 
zwitterion interaction, which is closely related to the dipole-dipole 
case. The first paper of this series was in the Editor's hands before 
Kirkwood's paper was published; the author is not interested in 
asserting any priority claims, but merely wishes to state that his 
work was independent, and that the present paper is a logical con­
tinuation of the previous work, particularly because experimental 
work in this Laboratory on the problems concerned has been under 
way for some time. 

(3) Sef. 1, Eq. 6. 
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and 
* = ll.52MDV<J! (7) 

where nD is the moment in Debye units and & is the 
molecular diameter in Angstrom units. 

We now proceed to the evaluation of 8(x). 
Starting with our previous result, and simplify­
ing to the case of spherical molecules, we have 

2ir p 2) (8) 

Expanding the hyperbolic sine as a series and in­
tegrating over r, we find 

3 V3 Zji (2* + 1)! (2» - D J 1 V n ' {) 

For simplification, we introduce the abbreviation 

jn = J z»dz/Va - 1 

where the j„'s satisfy the recursion formula 

Jn = 2(4» Vs + «/,_,)/(2« + 1) (10) 

jo = 2V3 

If we substitute in (9), we have 

/ = 

where 
ft. 

/ 3 . - 1 

H* 4 T T * 

/?*r 9 

, _h 
jn-l (2» 

I ^ 

2» - 3 
1)(2»)(2» + 1) 

For 6(x), we finally obtain 

1 + £ *' + 
29 

*« + 
• • ) 

(H) 

(12) 

(13) 
25 n 18375" 

The first 10 coefficients are given in Table I and 
suffice for the computation of 6{x) for 0 ^ x ^ 5; 
the function (13) is tabulated in Table II. 

K 

1 
2 
3 
4 
5 

/3 

1.0000 
0.0400 

TABLE I 

COEFFICIENTS 
n 

1.5782 X 10"' 
4.7511 X 10-' 
1.0828 X 10~« 

X 

OF 6(x) 

» 
6 
7 
8 
9 

10 

TABLE II 

VALUES OF 

»(*) 
0.1 0.0698 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

.1398 

.2102 

.2810 

.3526 

.4250 

.4985 

.5731 

.6493 

«(*) 
X 

1.0 
2.0 
3.0 
3.5 
4.0 
4.4 
4.7 
5.0 
6.0 

1 

fin 
1.9042 X 10-6 
2.6436 X 10-10 

2.9604 X 10-" 
2.7251 X 10-" 
2.0960 X 10-" 

»(*) 
0.7272 
1.6596 
3.206 
4.508 
6.520 
9.007 

11.694 
15.448 
44.35 

The leading term in d{x) as derived above is 
2ir#/9, while the leading term in Debye's function2 

is 8JTX/45. Apparently, Debye obtained his re­
sult by applying a charging process in his treat­
ment of the problem; at least the analog of the 
method used in his treatment of electrolytes 
gives &r*/45 as the leading term. But it hardly 
seems necessary to use this method for the case of 
dipoles, because the short range of dipole forces 
permits explicit calculation of the integral I, 
without meeting the convergence difficulties which 
beset the electrolytes problem. 

It would be very interesting to calculate the 
c2 term in (2), in order to see how soon the freez­
ing point curve should deviate from linearity, 
but the mathematical difficulties are enormous. 
It would be perhaps simple enough to calculate 
another term in the pairwise interaction, but this 
term would be of the same order as the leading 
term from triple interactions of dipoles, and both 
are needed in order to estimate the c2 term. It 
will, therefore, be necessary to decide the impor­
tance of higher terms from an examination of ex­
perimental data; at present there are none avail­
able in the literature of sufficient accuracy to jus­
tify a theoretical study. Experimental work on 
the problem is in progress in this Laboratory; 
preliminary results indicate that equation (5) is 
the correct limiting law for the case under con­
sideration. 

The dependence on concentration of the partial 
molal heat capacity of a dipole solute can also be 
obtained by the general method used in the pa­
pers of this series. We have, as a first approxima­
tion for the free energy 

-+ = RTlnV + kT]n(l + N'I/2V) (14) 

where / is the integral defined by (3). By applica­
tion of the Gibbs-Helmholtz equation to (14) and 
differentiation with respect to the temperature 
and concentration, we obtain 

NR 

where 

¥>(*) 

V i>c Jc-0 1000 DkT 

4x / 58 , , 11 
= 75 * T +441 *' + 1323' 

*>(*) 

X* + 
• • • ) 

(15) 

(16) 

Experimental work on this problem is in active 
progress in this Laboratory. Gucker4 states that 
he has already found experimentally a linear de-

(4) Gucker, Abstract of Papers to be presented before the Division 
of Physical and Inorganic Chemistry, Kansas City, Mo., week of 
April 12, 1936, p. 20, paper 69. 
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pendence of heat capacity on concentration in 
some cases. 

Summary 

For the case of solute molecules which may be 
represented as spheres containing a point dipole, 
it is shown that a linear relationship exists in the 
limit of low concentrations (1) between the os-

Ever since van der Waals introduced his equa­
tion of state, a tremendous amount of work has 
been done in an effort to find an equation which 
would represent more nearly than his the behavior 
of fluids over wide ranges of temperature and pres­
sure. It is clearly evident that the constants of 
van der Waals' reduced equation 

('+*)("-IHr 

are determined by the mathematical fact that the 
equation is cubic in V and has three real roots at 
the critical point. Consequently, these con­
stants can have little physical significance. 

Since the value of Rtc/PcVc = n varies con­
siderably for different substances (from 3.26 for 
helium to 4.98 for acetic acid), any general equa­
tion of state must allow for this variation. 

Recently the attempt to obtain a general equa­
tion of state has been more or less abandoned as 
impossible because it has been noticed that re­
duced vapor pressure curves for different sub­
stances do not coincide. For instance, at T ~ 
0.95 the vapor pressure of methane is 0.730 and 
that of methyl alcohol is 0.637, and the corre­
sponding values of PV/T for the vapor are 2.07 
and 2.53, respectively. This seems at first to in­
dicate that a general equation is impossible, un­
til it is recalled that no consideration has been 
given to the differences in the values of n and to 
the fact that the vapor pressure curve is not an 
isothermal line. I t might be possible that iso­
thermal lines for all substances coincide but that 
the vapor pressure curves for different substances 
cross the isotherms at slightly different points, 
depending upon the value of n. 

The Beattie-Bridgeman equation of state fits 

motic deviation function j of Lewis and Randall 
and the concentration and (2) between the partial 
molar heat capacity and the concentration. Ex­
plicit values of the corresponding coefficients are 
given, in terms of the moment and size of the 
solute molecule and the dielectric constant and 
temperature of the solvent. 
PROVIDENCE, R. I. RECEIVED MARCH 28, 1936 

any given substance as accurately as desired but 
its constants must be determined anew for each 
new material. Consequently, it seems that there 
is still a place for a general equation which, though 
possibly not fitting as closely as the Beattie-
Bridgeman equation, can be used as a guide to 
the behavior of all pure, non-associating, and non-
dissociating substances in the gaseous and liquid 
states. 

In order to find out whether or not a general 
equation of state is possible, some means must be 
found to plot the isotherms of all substances on a 
comparable basis. The simplest method of doing 
this seems to be to plot reduced values of PV/T 
against reduced values of P. On such a graph 
the critical point is at (1,1) and the equation for 
the gas at such low pressures and high tempera­
tures that it acts like an ideal gas would be rep­
resented by the line PV/T — n. This is easily 
shown to be true by multiplying the perfect gas 
equation, pv/t = R, by te/PcVe = n/R. Since 
n is different for different substances some means 
must be used to make the different ideal gas lines 
coincide. This can be done if the space from 
PV/T = 0 to PV/T = 1 is undisturbed and the 
space above PV/ T = 1 is stretched or compressed 
so that all the PV/T = n lines coincide at some 
arbitrary line PV/T = n0. The equation for such 
a stretch is 

(PV A n 0 - I PV . 

PV _ PVn0-I , W - W 0 

T T n - I + M - I 

where PV/T is the value of PV/T on the 
stretched plot. When PV/T values for points 
above PV/T — 1 and PV/T values for points 
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